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Abstract—Distributed computing offers the advantage of 
dividing and sharing network resources among interconnected 
processes, mitigating bottlenecks and minimizing wasted 
potential caused by idle computing nodes. These network 
resources encompass not only individual files but also 
hardware components such as processors. Furthermore, 
distributed computing can be complemented by concurrent 
and parallel computing methods to tackle complex and sizable 
problems through a divide-and-conquer approach. Given the 
substantial computational demands of such problems, 
parallelizing and distributing computing tasks across a 
network is often more cost-effective than relying on a single 
powerful computer. However, one drawback of distributed 
computing lies in the complexity of coordinating network 
resources. The objective of this project is to leverage 
parallelization within distributed computing to sort data using 
an implementation of Merge Sort. The approach for this 
project involved establishing a Client-Server network utilizing 
the Single Program Multiple Data (SPMD) model. This model 
facilitated the intake of datasets from clients and the 
distribution of workload across multiple cores on the server 
side. Specifically, a Merge Sort algorithm was implemented to 
organize arrays of increasing sizes, dispersing the 
computational load across multiple distributed threads on the 
server side. Comparisons were made with the speedup, 
efficiency, and runtimes achieved by increasing the number of 
distributed cores across different array sizes against the 
metrics of a single-core processor. 

Keywords—Computer Networks, Distributed Computing, 
Merge sort, Parallel Computing, Socket Computing 

INTRODUCTION 

 For this report on the client-server paradigm was 
used to transmit and receive data from a client node and is 
then for processed by a server that simulates multicore 
processing using threads. Each node in the network can act 
as a client or server, depending on which class is used, with 
an additional node acting as the server/router to facilitate 
handshakes and communication between these server and 
client roles. [4] 

The client-server architecture as enhanced to 
simulate parallel programming while keeping the basic 
functionalities of the server-client paradigm intact, with a 
server/router used to act as an intermediary communicator. 

A file containing a list of integers can be transmitted from a 
client node to a server node using parallelization, TCP, data 
parallelism, sockets, busy waiting, and event 
synchronization to facilitate reliable data transfers. [1]  

The focus of this paper is the use of parallelism to 
increase the speed and efficiency of completing a task. A 
splitting algorithm was designed and used to split the data 
the Server receives from the Client and divide the set into 
computationally comparable sets depending on the size of 
the input and the number of threads. Each thread is then 
called to run the sorting algorithm on the subset it was 
provided, and the values are returned to the control thread 
that will complete the last merge. This approach ensures that 
a list can always be sorted regardless of whether there are 
more threads than values in the set or a large list has only 
one available thread. By designing and implementing the 
program in a parallelized-centric approach, the performance 
gains were simulated to mimic a real-world sorting 
algorithm when provided with a variable number of cores 
and values. 

With the ability to simulate the effects of thread 
count and set size on the performance gain/loss of parallel 
computing, two experiments were conducted. This 
experiment is aimed at establishing a relationship between 
the number of threads and input size. These tests were run 
on lists consisting of sizes 10, 100, 200, and 300. By doing 
this, each of the four input sizes were run with five different 
counts of threads. 1, 2, 4, 8, 16. This was done to find the 
correlation between increasing the number of threads and 
worsening performance on smaller data sets. However, the 
significance of these exponential performance gains with 
increasing the data set was slightly apparent, so a second 
experiment was conducted. 

The second experiment conducted aims to answer 
the question: “How significant would the performance 
increase for if the datasets become exponentially larger for 
each increase in the number of threads used for processing?” 
An attempt to answer this question by increasing each of the 
data sets by a factor of 1000. By doing this, the increase in 
performance, due to the number of threads, became 
increasingly apparent and significant.  

This paper is organized in the following order: 
design architecture, implementation approach, simulation 
method, data analysis, and conclusion. The design section 
lays out the architecture used for the project. The 
implementation approach provides the specifics for how the 
Java programming language was implemented for parallel 
processing. The simulation method presents the metrics used 
to test the implementation techniques used for this project. 
The data collected from the simulations is broken down in 
the data analytics section. The final section, the Conclusion, 
summarizes the results obtained from the simulation and the 
experiences that were gained from these experiments. 

DESIGN ARCHTIECTURE 

The network architecture follows the Client-Server 
architecture with a third node called Server/Router to act as 
a handshaking intermediary. The process starts with the 
server router listening on socket port ‘5555’ for connection 
requests and builds a routing table in the process. For each 
client-server pair the server/router creates an SThread object 

Figure 1: Client-Server Architecture with Multithreaded Server 
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to facilitate the communication between each client-server 
pair. Once the connection has been established, the client 
creates a text file and generates a list of random unique 
integers of size n to send to the server for sorting.  

Because a Single Program Multiple Data (SPMD) 
implementation is used, the data is split between the 
simulated cores. A merge sort was used because it lends 
itself easily to parallelization: each core receives a subset of 
the array and sorts it before merging with the sorted subsets 
from the other threads, as shown in Figure 1. With this fork-
join style of parallelism that uses the divide and conquer 
approach larger datasets are divided into smaller more easily 
solved tasks.[5]  

The file created on the client side, that was 
received on the socket port ‘5555’ on the server side, is only 
passed to a single node instead of multiple nodes. The server 
processes the data received from the client side and divides 
the task of sorting the data between the simulated cores, as 
shown in figure one. Once the data is sorted and merged it is 
not sent back to the client, only the time taken to accomplish 
the sort is displayed in milliseconds.  

IMPLEMENTATION APPROACH 

This implementation of the client-server paradigm 
utilizes 5 unique classes, TCPServerRouter, TCPServer., 
TCPClient, SThread, and MergeSort.  

 
TCPClient: 
After the connection has been established between the client 
and server, the client will generate a random distinct array 
of the size n given by an argument to the function shown in 
the Random Distinct Number Generator code snippet. The 
function begins by creating a hash set and hashing each 
value randomly generated into it. It then checks each 
additional value to ensure that it is unique by checking for 
its existence in the hash set. If it is unique, meaning that it 
has not yet been hashed, it is added to the string followed by 
a comma to be used as a delimiter when the file is read at 
the server node. This function will return a string with n 
characters; where n represents the size of the array that will 
be sorted.  The file can then be easily parsed once it is 
received by the server.  
 
Random Distinct Number Generator 
public static String randomDistinct(int n) { 
    /* Used to track what ints have been used 
*/ 
    HashSet<Integer> isUsed = new HashSet<>(); 
    String newList = ""; 
    Random random = new Random(); 
 
    /* Loops 1024 times and assigns a new 
unique value each time. */ 
    for (int i = 0; i < n; i++) { 
        int newValue = -1; 
 
        /* Ensures that there is no duplicate 
values */ 
        do { 
            newValue = random.nextInt(999999) 
+ 1; 
        } while (isUsed.contains(newValue)); 

 
        /* Adds the value to the known list 
and also to the generated list. */ 
        newList+= newValue + ","; 
        isUsed.add(newValue); 
    } 
    newList = newList.substring(0, 
newList.length()-1); 
    /* Sorts and assigns the values generated 
to the field. */ 
    return newList; 
} 
 

After this array is instantiated by the client, a file 
named ‘file.txt’ is created and a PrintWriter object is utilized 
to pass the generated array into this newly created file. This 
process is the equivalent to data marshalling in a real-world 
environment as the data is ‘marshalled’ into a format that 
both the client and server can understand, a text file is used 
in this project’s implementation. The line “Bye.” is 
appended to the end of the file to signal to the server that it 
has reached the end of the file. The file is then sent over the 
network to the server using a TCP socket. To do this, the 
client creates a socket connecting it to the server router on 
port 5555 and passes the server router to the intended 
destination by passing it the IP address of the server. The 
output stream from this socket is then passed into the 
constructor of a DataOutputStream allowing it to take 
advantage of its ability to send raw bytes through the socket. 
For the implementation of this project, the client sends the 
array as a stream of bytes utilizing a buffer of 8kb. A 
FileInputStream object is utilized to loop through the file, 
reading in 8kb into the buffer with each iteration, and 
sending those bytes through the DataOutputStream, and 
repeating until all bytes are sent. This process is 
demonstrated in the File Creation and Writing code snippet. 
Finally, once all the data is sent, the objects are closed, and 
the connection is terminated. The client is no longer needed 
as the server will not return the sorted array after it’s 
processed. [4] 
 
File Creation and Writing 
File vFile = new File("src/Client/file.txt");       
//creates file 
byte[] Bytes = new byte[8192];                 
//creates a byte buffer for bytes 
InputStream dis = socket.getInputStream(); 
OutputStream dos = socket.getOutputStream(); 
int sentCount = 0; 
FileInputStream fis = new 
FileInputStream(vFile); 
//write file to dos 
while ((sentCount = fis.read(Bytes)) != -1) { 
    dos.write(Bytes, 0, sentCount); 
} 
 
TCPServerRouter: 

The server/router utilizes a ServerSocket object as 
the server/router node prepares to handle simultaneous 
incoming connections. Each connection is stored in a 
‘lookup’ table to allow for incoming requests to be 
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referenced against the table to serve each request to the 
correct and intended receiver. The lookup table houses each 
socket and that socket's host address. These connections are 
initially facilitated by the accept() method blocking the 
execution of the process until a connection is received. Once 
a connection is established, an SThread is created and 
passed to that connection in addition to the address of the 
lookup table. This allows the thread to service the 
connection while the original server router process can 
continue accepting additional connections. This can be 
considered as an ‘asynchronous blocking’ technique as 
shown in the Socket Creation and Connection code snippet 
3. [2][6] 
 
Socket Creation and Connection 
clientSocket = serverSocket.accept(); 
            String [] ip = 
(clientSocket.getRemoteSocketAddress() + 
"").split(":"); 
            pw.println(ip[0].substring(1));  
//this line updates the routing table with a 
new line holding the clients ip in slot one 
and a delimiter eg. [clients ip] , [slot for 
servers ip] 
            pw.flush(); 
            RoutingTable[ind][0] = 
ip[0].substring(1); 
            RoutingTable[ind][1]=clientSocket; 
SThread t = new SThread(RoutingTable, 
clientSocket, ind); // creates a thread with a 
random port 
t.start(); // starts the thread 
ind++; // increments the index 
 
 
SThread: 

This class contains the thread object used to serve 
each connection and act as a middleman between the client-
server pair. It starts by taking in the routing table and the 
client’s socket passed through as an argument to the 
SThread constructor before parsing the lookup table until 
the intended destination is found as shown in the SThread 
connection code snippet. Once found, the socket takes the 
InputStream of the client and passes it to the OutputStream 
of the server, which facilitates the connection. The beauty of 
this structure is that the main server router process is 
completely unaffected by this process and continues 
accepting connections.  

 
SThread Connection 
// loops through the routing table to find the 
destination 
for (int i = 0; i < 10; i++) { 
    if (destination.equals((String) 
RTable[i][0])) { 
        outSocket = (Socket) RTable[i][1]; // 
gets the socket for communication from the 
table 
        System.out.println("Found destination: 
" + destination); 
        outToClient = 
outSocket.getOutputStream(); // assigns a 
writer 

    } 
} 
 
TCPServer: 

The server handles the main portion of this 
implementation as it does the sorting of arrays. This process 
can be divided into three subsections: receiving the array, 
dividing the work, and merging the results. The first 
operation the server needs to accomplish is receiving the file 
containing the list of integers array. Upon the server process 
beginning execution, a constant is defined for how many 
threads the server wants to utilize for sorting. This can be 
easily modified for testing purposes. The line below 
demonstrates this for an example run using 8 threads: 

 
final int NUM_OF_THREADS = 8; 

 
The server begins by connecting to the server 

router in the same fashion as the client. It then utilizes a 
DataInputStream as well as the 8kb size buffer to accept the 
sent bytes and parse them into strings. A vector is utilized to 
hold the lines. A vector was chosen since it is a dynamic 
data type, and can accept many lines without crashing, 
whereas a fixed array can only hold a fixed number of lines. 
Once the server receives the designated end term, “Bye.”, 
the loop terminates stopping the parsing. As a result, an 
array is stored in a string entitled ‘fromClient’ containing 
the values of the full array. Finally, a thread pool is created 
to house the number of threads defined in the 
NUM_OF_THREADS constant. The receiving process is 
shown in the Array Receiving code snippet. 

 
Array Receiving 
fromClient = in.readLine();// initial receive 
from router (verification of connection) 
 System.out.println("ServerRouter: " + 
fromClient); 
 // Communication while loop TODO:: alter this 
before running with client 
 Vector <String> s = new Vector<>(); 
        while ((fromClient = in.readLine()) != 
null) { 
            s.add(fromClient); 
            //System.out.println("Client said: 
" + fromClient); 
            if (fromClient.equals("Bye.")) // 
exit statement 
                break; 
        } 
        fromClient=s.get(0); 
 
 //array is now received by the server and a 
thread pool is created 
Thread[] threadpool = new 
Thread[NUM_OF_THREADS]; 
 
 

The next step is to convert the string of integer 
values into an integer array that can be sorted. Since the 
arrays will be frequently passed between methods and 
threads, an Integer object array was chosen to store the 
numbers rather than a primitive integer array as it is easier 
to pass by reference rather than by value between threads. 
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This was achieved using the string split operation on the 
received string, which parses through the array converting 
each element from a string to an integer. Array Creation 
code snippet displays this step in the program. 
 
 
Array Creation 1 
String[] splitString = fromClient.split(","); 
//create a wrapper object array to store 
values 
Integer[] arrayValues = new 
Integer[splitString.length]; 
//loop through and insert values into Integer 
object array to pass by reference 
// this is o(n) overhead, maybe find better 
way to copy over values 
for (int i = 0; i < arrayValues.length; i++) { 
    arrayValues[i] = 
Integer.parseInt(splitString[i]); 
}  

 
The next step is to divide the work among the 

threads into equal parts too. This is first done by creating a 
vector called workDiv of type <Integer []> that will store 
each unit of work to be passed to the threads. A ‘startIndex’ 
is then defined which holds the size of each unit of work and 
the starting index of the second subarray. The size of each 
unit of work can be found by dividing the total length of the 
input array, n, by the number of threads. If the resulting 
starting index is not an even factor of n, it is incremented to 
ensure no extra values are ignored. Because startIndex 
works as a pointer to the start index of the next portion of 
values, the size of each increment needs to be stored in a 
separate variable called ‘inc’. At this point sorting is ready 
to begin and the timer begins tracking. The division of work 
is shown in the code snippet Dividing the Array. 
 
Dividing the Array 2 
Vector<Integer[]> workDiv = new Vector<>(); 
int startIndex = (arrayValues.length / 
NUM_OF_THREADS); 
if (startIndex % arrayValues.length != 0) { 
    startIndex++; 
} 
System.out.println("after spliting"); 
//inc below stores the increment to move up at 
each itteration of while loop 
int inc = startIndex; 
int prev = 0; 
long start=System.nanoTime(); 
 

For sorting the array, merge sort was employed for 
its consistent efficiency and ease of dividing the data among 
the threads. A MergeSort object was created which 
implements the Java Runnable interface enabling it to be 
runnable by a thread. It operates as a typical merge sort, 
except it works in primitive types so it required us to pass 
the values as a primitive type and copy them back to an 
Integer object afterwards. The merge sort constructor and 
run method is shown in the code snippet MergeSort 
Instantiation. 
 
 

MergeSort Instantiation 
mergeSort(Integer [] array) 
{   this.array=array; 
    this.intermediate=  new int 
[array.length]; 
    for(int 
j=0;j<this.intermediate.length;j++){ 
        this.intermediate[j] = array[j]; 
    } 
} 
 
@Override 
public void run() { 
    sort(intermediate, array.length); 
    for(int j=0;j<this.array.length;j++){ 
        this.array[j] = intermediate[j]; 
    } 
}  
 

Once the size of the work units has been 
determined, work can be assigned to the threads. If there are 
1 or 2 threads active, a separate case is enacted to minimize 
the overhead as shown in the Work Divide Case 1 or 2 code 
snippet. For 1 thread, the singular thread in the thread pool 
is simply activated and passes through the entire array. For 2 
threads, the array is divided in half and each half is passed 
into a thread. For either case, the threads are initialized and 
pass these threads a new mergeSort(arrayValues) and 
start each thread. Additionally, there is a check to ensure 
that there are not more threads than array values in extreme 
cases. If the number of values is small, for example 10, they 
are passed to a single thread.  This is done because the 
overhead for separating each value, creating all the threads, 
‘sorting’ and merging would take significantly longer rather 
than just passing the 10 values to a single thread. Since only 
one parallel task is worked on at a time, it was determined to 
not use solutions, such as dynamic blocking where the task 
size would be a dynamically increased aggregating number 
of parallel tasks, before enqueuing it as one batch task.[7] In 
either case, once the threads are started, the server uses a 
spin lock until the threads join back to ensure that all threads 
are completed before the merging process can begin. 
 
Work Divide Case 1 or 2 
if (NUM_OF_THREADS == 1 || 
arrayValues.length<threadpool.length) { 
    //create thread and pass it the full array 
    threadpool[0] = new Thread(new 
mergeSort(arrayValues)); 
    //start thread 
    threadpool[0].start(); 
    //a timer to ensure thread finishes before 
the prints proceed 
    while(threadpool[0].isAlive()); 
} else if (NUM_OF_THREADS == 2) { 
    //since there are 2 threads, 2 subarrays 
are needed 
    //divide the input array (arrayValues) 
into 2 subarrays of each half 
    Integer[] first = 
Arrays.copyOfRange(arrayValues, 0, 
arrayValues.length / 2); 
    Integer[] second = 
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Arrays.copyOfRange(arrayValues, 
(arrayValues.length / 2), arrayValues.length); 
    //create threads for each half 
    threadpool[0] = new Thread(new 
mergeSort(first)); 
    threadpool[1] = new Thread(new 
mergeSort(second)); 
    //start threads 
    threadpool[0].start(); 
    threadpool[1].start(); 
    //method to ensure they finish 
    while(threadpool[0].isAlive() || 
threadpool[1].isAlive()); 
    //finally, merge the two 
    merge(arrayValues, first, second); 
 
}  

 
The third case is when there are more than 2 

threads, the work will need to be dynamically allocated and 
multiple threads will be created. A simple algorithm was 
devised to divide the work evenly utilizing the previously 
mentioned variables ‘startIndex’ and ‘inc’ by looping 
through and adding each ‘inc’ worth of values starting at 
each ‘startIndex’ pointer, then increasing the pointer to 
assign the next unit of work and saving the previous pointer 
in a previous variable for later. Then a unit of work is added 
to the previously defined ‘workDiv’. At each iteration of the 
loop, a check is performed to ensure that an index out of 
bounds runtime error is not thrown by checking if the next 
‘startIndex’, the ‘startIndex’ + ‘inc’, is less than the array 
length. A boolean flag is used to control the while loop, with 
flag ‘f’ initially set to true. If the next ‘startIndex’ + ‘inc is 
less than the size of the array, it is determined that there is 
one division of work remaining, and this division of work is 
smaller than the ‘inc’ size. The last bit of values is added to 
a final ‘workDiv’ unit and fllag f is set to false to terminate 
the loop. At this point the work is divided out into equal 
parts with one final unit being slightly smaller. This 
algorithm is implemented in code snippet Work Divided 
Case 3. 
 
Work Divided Case 3 

while (f) { 
                //split work into 1/n parts 
                Integer[] work = 
Arrays.copyOfRange(arrayValues, prev, 
startIndex); 
                //insert work into vector 
                workDiv.add(work); 
                //update prev and start index 
to next values 
                prev = startIndex; 
                startIndex += inc; 
                //check if the next iteration 
will cause condition to fail 
                if (startIndex + inc >= 
arrayValues.length) { 
                    //if so the below will 
create an array of all the remainng values 
that will not fill an array 
                    Integer[] ww = 
Arrays.copyOfRange(arrayValues, prev, 

startIndex); 
                    prev = startIndex; 
                    //add the last full sized 
array to the vector 
                    workDiv.add(ww); 
                    //make the index to stop 
equal the last value of the array 
                    startIndex = 
arrayValues.length; 
                    //copy the last values 
that will not full an array into their own 
smaller arary and add 
                    Integer[] w1 = 
Arrays.copyOfRange(arrayValues, prev, 
startIndex); 
                    workDiv.add(w1); 
                    //stop the loop 
                    f = false; 
                } 
            }  

 
At this point the threads are ready to begin 

execution by looping through the thread pool. While the 
threads are running, the server process’s spin lock is applied 
until all threads have completed execution as show in the 
Run Threads code snippet.  
 
Run Threads 
//activate all threads 
for (int i = 0; i < 
Math.min(threadpool.length, workDiv.size()) ; 
i++) { 
    threadpool[i] = new Thread(new 
mergeSort(workDiv.get(i))); 
    threadpool[i].start(); 
} 
// small pause to wait for threads to return 
to us. (could make these threads synchronous) 
boolean [] alive=new 
boolean[Math.min(NUM_OF_THREADS, 
workDiv.size())]; 
boolean allAlive=true; 
while (allAlive){ 
    for( int i=0;i< alive.length;i++){ 
        if(!threadpool[i].isAlive()) { 
            alive[i] = true; 
        } 
    } 
    allAlive=false; 
    for (boolean I : alive){ 
        if(!I){ 
            allAlive=true; 
            break; 
        } 
    } 
} 
 

The final step is to merge the results. Typically, the 
merge sort algorithm will merge two arrays at a time 
recursively, however for this implementation the subarrays 
are merged at once with a custom merge algorithm. The 
merge function takes in two parameters, a pointer to the 
output array, the initial input integer array object, and a 
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pointer to a vector containing all the subarrays, ‘workDiv’. 
The algorithm begins by creating a bitmap style counter 
integer array of size n, that stores the current index of each 
input array in the vector. A nested loop is then utilized 
where the outer loop iterates through each index of the 
output array and the inner loop parses through each sub 
array at the index of each subarray’s counter. The inner loop 
checks to ensure no memory violation will occur by making 
sure the size of the array is greater than the soon to be index 
before going to the current index of each sub array and 
finding the lowest. It does this by comparing each element 
to the ‘smallest’ variable and storing the smallest value as 
well as the index of the counter array that produced the 
value. When all the values are compared, and the smallest is 
found, that value is stored into the output array and the 
respective counter is indexed to ensure that each subarray 
progresses. This process repeats for every index of the 
output array until all the sorted subarrays are merged into 
one final array. Finally, this array is passed back to the 
server, and the server’s work is complete. This custom 
algorithm is shown in code snippet Merge. 
 
Merge 
public static void mergeAll(Integer[] output, 
Vector<Integer[]> input) { 
    //counters array acts as int bit map to 
keep track of each subarrays index 
    int[] counters = new int[input.size()]; 
    //2 vars to keep track of current smallest 
val and its index in the given array 
    //these values are used so it will be 
clear if either is causing a bug 
    int smallest = 9999; 
    int index = -1; 
    //outer loop counts index of output array 
    for (int i = 0; i < output.length; i++) { 
        //inner loop works through each 
subarray in the vector 
        for (int j = 0; j < input.size(); j++) 
{ 
            //first check to see if the index 
will cause an exceptoin (array is out of novel 
values) 
            if (counters[j] == 
input.get(j).length) { 
                continue; 
            } 
            //else check if given arrays value 
is smaller than running smallest 
            else if (input.get(j)[counters[j]] 
< smallest) { 
                //update running smallest and 
its index 
                smallest = 
input.get(j)[counters[j]]; 
                index = j; 
            } 
        } 
        //finally update the current index of 
output array with correct smallest value 
        output[i] = smallest; 
        counters[index]++; 
        //reset index and smallest counters 

        index = -1; 
        smallest = Integer.MAX_VALUE; 
    } 
} 
 

Finally, the total time the server took to complete 
the sort is calculate by subtracting the final time by the 
initial time and storing as shown below: 
 

start = System.nanoTime()-start; 
 

SIMULATION METHOD 

To test the theory that a program's runtime can be 
decreased by dividing the problem into approximately equal 
smaller parts. These smaller problems are passed to threads 
used to simulate a multicore processor that will each smaller 
problem. After the work is performed by the threads the 
parts are returned to be combined to form a solution to the 
original problem.   To simulate multiple processors threads 
were created to act as a core in the CPU that receives the 
smaller portions of the problem. The problem that was used 
to test this theory was to sort an array of varying sizes that 
contained distinct integers. The array is divided into parts 
equal to the number of processors used during that trial. The 
number of processors tested were: 1, 2, 4, 8 and 16 with 
arrays varying from 10 to 300000 elements. The time taken 
by the sort was recorded in milliseconds after each trial. 
Two experiments were conducted using two different arrays 
that increased by two different factors.  The first experiment 
focuses on how smaller arrays are affected by parallel 
processing from a size 10 to 300 elements. The second 
experiment then increases the first experiment’s arrays by a 
factor of 1,000 to see how larger arrays are affected with 
parallel processing practices. 

A. Experiment I 

For the first experiment, four arrays were generated of 
sizes 10, 100, 200, and 300. Then each array was populated 
with random and distinct numbers ranging from 1 to 
999,999 to ensure the use of a wide range of data. These 
arrays were each written to separate text files, that were 
delimited by commas. Subsequently, these text files were 
transmitted to the server process via a TCP socket. Once the 
data reached the server side, each array was sorted using a 
modified Merge Sort algorithm to support multithreading. 
For the context of this experiment, this sorting process was 
performed on two separate computers with different 
hardware configurations and was conducted in five stages 
for each array size. 

In each stage, the specified array size was sorted using a 
thread count of 2n, where n represented the stage number 
indexed by 0. For instance, in the first stage for the array 
size of 10, the array was sorted by 20 threads, providing us 
with the serial performance for that dataset. This procedure 
was repeated for each stage, thereby giving us the 
performance for thread counts ranging from 1 to 16 threads. 
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After each stage, the results for each array size were 
compiled into a table, which will be discussed later. 

B. Experiment II 

The second and final experiment, four arrays were 
generated again, following a structure similar to that of 
experiment one. However, each array size was scaled up by 
a factor of 1,000, resulting in sizes of 10,000, 100,000, 
200,000, and 300,000 elements, respectively. Once again, 
each array was populated with random and distinct integers 
ranging from 1 to 999,999. Subsequently, the arrays were 
transmitted via a TCP socket to the server process. 

Similar to experiment one, the server process executed a 
modified Merge Sort on each text file corresponding to a 
different array size and calculated the overall time required 
to sort the elements. The sorting process was divided into 
five distinct stages. In these stages, the thread counts varied, 
starting with 20 threads in the initial stage and concluding 
with 24 threads in the final stage. The results obtained for 
each scaled array size were compiled into a table, which will 
be discussed in the following section. 

DATA ANALYSIS 

From each experiment the time was collected, in 
nanoseconds and recorded in milliseconds, for the time it 
takes the server to process and sort a received array. The 
timing begins at the creation of the threads and finishes 
when the data from each thread finishes merging creating a 
complete sorted array. For the experiments the improvement 
in performance of increasing the number of parallel 
processors versus the serial one, is measured using the 
speedup and efficiency metrics. The speedup, the ratio of 
the program runtime in serial over the runtime in parallel: 
 

  
     [8] 

Where n is the size of the input and p is the number of 
processors. A perfect speedup score is where the speedup 
equals the number of processors, Speedup(n,p) = p, also 
known as linear speedup. To determine how each processor 
contributed to the speedup parallel efficiency is used. 
Parallel efficiency is calculated using the following formula: 
 

 
      [8] 
Parallel efficiency is given by the speedup over the number 
of processors. A perfect score, which corresponds to linear 
speedup, is the # of processors / # of processors = 1.0, 
meaning that each processor is being used to its maximum 
potential. 
 These three metrics; runtime, speedup and 
efficiency; are used to evaluate and graph the output of the 
parallel server on varying types of input sizes. The first 
experiment captured the performance of the server for a 
smaller set of array sizes in order to test the lower boundary 
of performance. In contrast, the second experiment scaled 
these original input sizes to mimic real world performance 
with much larger input sizes. 
 

 

C. Experiment I Results 

 
In the initial experiment, four separate files were 

transmitted with input sizes ranging from 10 to 300 
elements to be sorted. As detailed earlier in the Simulation 
Method, each of these input files underwent five distinct 
stages, with each stage spawning a different number of 
threads to aid in computation. In the first stage, illustrated in 
Table 1, the server sorted input sizes serially, utilizing only 
one core. 

Examining the first column of Table 1, where the 
array size of 10 was sorted using 1 through 8 cores, it is 
observed that the increase in cores has no effect on the time 
required to sort the data. This lack of impact stems from the 
negligible input size, causing any overhead incurred by 
using additional threads to outweigh the benefits of 
parallelism. Additionally, it is important to note for the 
program’s implementation the program executed in serial 
whenever the thread count would exceed the elements in the 
arrays causing the last value in the column to be the same as 
the cell with serial time. This phenomenon is further 
underscored by the second column of Table 1, which depicts 
the runtime for an array size of 100 elements. Here, an 
increase in runtime corresponding to the increase in the 
number of threads used is seen, exemplifying the scenario 
where the overhead from parallel sorting surpasses the 
benefits. 

However, upon examining the latter two input sizes 
in the table, it is discerned that there is an increase in 
performance with the escalation of cores used, until four 
cores is surpassed. This improvement arises from the 
problem size being sufficiently large to yield faster 
performance despite the overhead. Nevertheless, as the 
number of cores increases, the performance gain diminishes, 
albeit still outperforming the serial time. 

 

 
The results presented in Table 1 are further 

elucidated by the 3-Dimensional plot depicted in Figure 2. 
This graphical representation showcases four curves, each 
illustrating the runtime plotted against the input size and the 
number of cores utilized. It is evident that as both the input 
size and core count increase, the trough of the curve 
deepens, indicating an enhancement in performance 
resulting from the utilization of more cores to process the 
data. 

Table 1: Runtimes for the randomly generated arrays in 
experiment 1. 

 

10 100 200 300

p = 1 2 2 6 7
p = 2 2 2 4 5
p = 4 2 2 2 3
p = 8 2 3 4 4

p = 16 2 4 5 7

Runtime
Number 

of 
Threads

Array Sizes (# of elements)
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However, this performance gain begins to diminish 
once a threshold of 4 cores is reached. This decline can be 
attributed to the overhead incurred from spawning 
additional threads outweighing the benefits yielded by those 
threads. 

 

 
 After collecting the runtimes, the speedup was 
computed using the respective formula for each set of 
threads across all array sizes. Table 2 showcases these 
calculated values. As anticipated, the first column in Table 2 
exhibits a speedup of 1 since each set of cores operated 
within serial time. The speedup begins to noticeably decline 
when the second column in Table 2 is examined, where the 
overhead from employing 8 and 16 threads resulted in an 
overall slowdown. 

 
 
 
 

 
 

However, notably improved results are observed in 
the latter two columns, particularly with the array size of 
200, where a speedup of 3 is achieved when using 4 threads 
to sort the elements. Remarkably, the server attained the 
most favorable speedup results with an array size of 200, 
slightly surpassing the adjacent column. This discrepancy is 
further accentuated by the 3-D graph depicting the speedups 
in Figure 3. It is evident that the curve for the array size of 
200 exhibits a substantially higher peak but a swifter decline 
in speedup. This variation can be attributed to the 
divisibility of the data in the implementation. The array size 

of 200 is considerably more divisible by powers of two, 
leading to a more even distribution of the data. This 
equitable distribution of the workload accentuates the 
speedup, particularly for smaller datasets. 

Although, upon increasing the cores beyond 4, a 
sharper decrease is observed in speedup compared to the last 
column. This decline can be attributed to the smaller 
overhead-to-performance ratio for the smaller datasets, 
unlike the array size of 300 elements. 
 

 
 Following the computation of speedup for the 
parallel server, the efficiency is analyzed to see how 
effectively the server distributed the work among the cores. 
Table 3 presents all the calculated efficiencies derived using 
the efficiency formula mentioned earlier. As anticipated, the 
efficiency for the array size of 10 elements was notably 
subpar. Upon examination, it becomes apparent that one 
core predominantly handles the workload. This outcome is 
expected, considering the small input size, where most of 
the data is assigned to the initial core, with any remaining 
portion distributed among others. 

This declining trend persists across the remaining 
dataset, with efficiency diminishing as the number of cores 
increases. This suggests that the server struggles to 
distribute the workload efficiently for larger core counts, 
particularly evident in smaller input sizes, indicating that a 
single core bears the brunt of the computation. 
 

 
Furthermore, it's noteworthy that the efficiency 

peaks for the test file with an input size of 200. This is 
clearly illustrated in the 3-D plot presented in Figure 4, 

Figure 3: A line graph displaying the calculated speedup for each 
array size for a given number of processors for experiment 1. 

 

Figure 2: A line graph displaying the recorded runtimes for each 
array size for a given number of processors for experiment 1. 

 

Table 3: Calculated efficiency for the randomly generated arrays in 
experiment 2. 

10 100 200 300
p = 1 1 1 1 1
p = 2 0.5 0.5 0.75 0.7
p = 4 0.25 0.25 0.75 0.58
p = 8 0.13 0.08 0.19 0.22

p = 16 0.06 0.03 0.08 0.06

Efficiency
Number 

of 
Threads

Array Sizes (# of elements)
Table 2: Calculated speedup for the randomly generated arrays in 
experiment 1. 

10 100 200 300
p = 1 1 1 1 1
p = 2 1 1 1.5 1.4
p = 4 1 1 3 2.33
p = 8 1 0.67 1.5 1.75

p = 16 1 0.5 1.2 1

Speedup
Number 

of 
Threads

Array Sizes (# of elements)
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depicting all efficiencies plotted against the number of 
threads and the input size. Figure 4 highlights the highest 
peak for efficiency, observed with more than one core, 
specifically at thread counts of 2 and 4 for an input size of 
200 elements. As mentioned earlier, the server exhibited the 
best speedup with an input size of 200 elements due to the 
improved divisibility of the data. This observation is further 
supported by the efficiency, indicating that the optimal 
efficiency was achieved when the input size was 200 
elements in experiment 1. 
 

 
 

D. Experiment II Results 

 
After it was observed in the first experiment that 

there was no real increase in efficiency or speedup as the 
array was divided into an increasing number of processors.  
The steps of the first experiment were repeated with the size 
of the arrays increased by a factor of 1,000.  With the array 
sizes increased 1,000 times the benefits of parallel 
processing can be seen.   

As the array increased the benefits of parallel 
processing can be seen in Table 4.  When the array is only 
1000 the time it takes to process the array is by 
approximately half from one to two processers.  The 
decrease in time is again reduced by half from using two 
processors.  When eight and sixteen processors are used on 
an array of 10,000 elements the decrease in time to process 
the arrays is hampered by the work to divide the array. 
When the array size is increased from 100,000 to 300,000, 
the decrease in time to process for number of splits equal to 
the number of cores is noticeable.  The runtime decreases 
between about a quarter a third of the time when the number 
of processors is increased between two and four processors.  
When the processors are increased to eight or sixteen the 
runtime is only decreased by about half.  

 

 
 When the runtimes are plotted onto a 3D graph the 
difference between runtimes depending on the number of 
processors and array size can be seen.  It is shown in figure 
5 that the greatest decrease in time from one processor is 
seen in an array of 300,000 elements.  While an array of 
10,000 elements might look like it does not decrease but that 
is due to the fact that the 300,000 elements decrease so 
much compared to the 10,000 elements array. 
 
 

 
 
 The speedup gained by using parallel processing is 
almost equal for each processor regardless of the size of the 
array.  The speed up almost increase by the same factor has 
the number of processors doubles.  The speed up is more 
than tripled from one processor to two processors and from 
two to four processors.  The speedup is slightly slowed to an 
increase of a factor of two when the number of processors 
increases from four to eight.  When the number of 
processors is doubled from eight to sixteen the speedup is 
only gained by a factor of 1.75.   
 

Figure 5: A line graph displaying the recorded runtimes for each 
array size for a given number of processors for experiment 2. 

Figure 4: A line graph displaying the calculated efficiency for each 
array size for a given number of processors for experiment 1. 

Table 4: Runtimes for the randomly generated arrays in experiment 2. 
 

10000 100000 200000 300000
p = 1 591 48221 183908 403233
p = 2 258 14191 57020 109616
p = 4 123 4532 15974 34549
p = 8 123 2278 8335 18565

p = 16 104 1257 4668 10450

Runtime
Number 

of 
Threads

Array Sizes (# of elements)
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 The similarities between each sized array are best 
visualized by graphing table 5 to a three-dimensional line 
graph where the depth axis is the size of the arrays used, the 
horizontal axis is the number of processors used and the 
vertical axis is the speedup represented as a percentage.  The 
graph in figure 6 shows that the speedup follows the same 
shape as the theoretical big O trajectory as a merge sort, 
which is O(nlog2n).   
 

 
 

Unlike the speedup the efficiency did increase the 
same amount for all the array sizes.  The array with 10,000 
elements was the least efficient while the arrays with a 
hundred thousand elements or more had approximately the 
same efficiency.  The ten thousand element array followed 
the same pattern as the larger arrays but had a lower 
increase in efficiency for each increase in the number of 
processors used.  All the arrays had their greatest efficiency 
when four threads were used to sort an array.  The efficiency 
for each processor begins to decrease after four threads are 
used.     
 

 
 
 The changes in efficiency for each array are 
visualized in figure 7.  The arrays 100,000 elements and 
larger the slope of the graph increases between a factor of 
0.6 to 0.8 for one to eight processors used.  When the 
number of processors is increased to eight and higher the 
efficiency is between 88% to 95% the efficiency of the 
previous number of processors.  The ten thousand element 
array has the smallest gain in efficiency and has the largest 
decrease in efficiency as the number of processors increases 
after four threads.  Efficiency only increases by 15% and 
then 5% as the number of processors is doubled from one to 
four.  When the number of processors is doubled again to 
eight and sixteen the efficiency decreases by about 50% for 
each increase.   
 

 
 

CONCLUSION 

The primary goal of this research paper was to 
implement a multi-threaded server capable of sorting large 
data inputs sent over a network from clients. The SPMD task 
parallelism method of implementation effectively addressed 
the issues of multi-threading including thread 
synchronization and load balancing of the data among the 
concurrently running threads [8].  

Times were documented for various combinations 
of array sizes ranging from 10 to 300,000 as well as the 
number of threads used between 1 and 16. These conditions 
were each run separately on two computers of differing 
specifications. During the two experiments run, there was 

Table 6: Calculated efficiency for the randomly generated arrays in 
experiment 2. 

10000 100000 200000 300000
p = 1 1 1 1 1
p = 2 1.15 1.7 1.61 1.84
p = 4 1.2 2.66 2.88 2.92
p = 8 0.6 2.65 2.76 2.72

p = 16 0.36 2.4 2.46 2.41

Efficiency
Number 

of 
Threads

Array Sizes (# of elements)

Figure 6: A line graph displaying the calculated speedup for each 
array size for a given number of processors for experiment 2. 

10000 100000 200000 300000
p = 1 1 1 1 1
p = 2 3.68 3.4 3.23 3.68
p = 4 11.67 10.64 11.51 11.67
p = 8 21.72 21.17 22.06 21.72

p = 16 38.59 38.36 39.4 38.59

Speedup
Number 

of 
Threads

Array Sizes (# of elements)

Table 5: Calculated speedup for the randomly generated arrays in 
experiment 2. 

Figure 7: A line graph displaying the calculated efficiency for each 
array size for a given number of processors for experiment 7. 
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almost no speedup and even increased time in some cases 
when the number of cores increased for the smaller arrays. 
This can be explained by the overhead required to distribute 
the work across many threads when there is just not enough 
work required to justify it. However, for the large arrays 
(>100,000), it was observed that a significant speedup 
occurred when the number of threads increased. This can be 
explained due to the cost of overhead minimal compared to 
the increased efficiency of the added cores. The efficiency in 
these large test cases indicated a super linear speedup where 
the speedup is greater than anticipated for an increased 
number of cores.  

This research showed that there is no optimal 
number of cores that will suit all cases. To allow more 
consistent results in a dynamic environment of differing 
input sizes, a threshold could’ve been implemented to assign 
the number of cores on runtime. Overall, it was determined 
that spending the extra time to implement parallel processing 
for a sorting algorithm yielded significantly better results 
when the amount of data is substantial. 
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APPENDIX 

The demonstration and the execution of this 
program with the different input sizes can be found in the 
mp4 file attached in the submission of this report.  

 
 
 

 


