

CS 4504
PARALLEL & DISTRIBUTED COMPUTING

PROJECT REPORT – PART 2

Spring 2024

Instructor - Dr. Patrick Bobbie

Names: Eli Headley/02, Charlie McLarty/02, Sam Bostian/02,
Ernesto Perez/02, Daron Pracharn/02, Michael Rizig/02, and

Jonathan Turner/W01

2 | P a g e

Abstract—Distributed computing offers the advantage of
dividing and sharing network resources among interconnected
processes, mitigating bottlenecks and minimizing wasted
potential caused by idle computing nodes. These network
resources encompass not only individual files but also
hardware components such as processors. Furthermore,
distributed computing can be complemented by concurrent
and parallel computing methods to tackle complex and sizable
problems through a divide-and-conquer approach. Given the
substantial computational demands of such problems,
parallelizing and distributing computing tasks across a
network is often more cost-effective than relying on a single
powerful computer. However, one drawback of distributed
computing lies in the complexity of coordinating network
resources. The objective of this project is to leverage
parallelization within distributed computing to sort data using
an implementation of Merge Sort. The approach for this
project involved establishing a Client-Server network utilizing
the Single Program Multiple Data (SPMD) model. This model
facilitated the intake of datasets from clients and the
distribution of workload across multiple cores on the server
side. Specifically, a Merge Sort algorithm was implemented to
organize arrays of increasing sizes, dispersing the
computational load across multiple distributed threads on the
server side. Comparisons were made with the speedup,
efficiency, and runtimes achieved by increasing the number of
distributed cores across different array sizes against the
metrics of a single-core processor.

Keywords—Computer Networks, Distributed Computing,
Merge sort, Parallel Computing, Socket Computing

INTRODUCTION

 For this report on the client-server paradigm was
used to transmit and receive data from a client node and is
then for processed by a server that simulates multicore
processing using threads. Each node in the network can act
as a client or server, depending on which class is used, with
an additional node acting as the server/router to facilitate
handshakes and communication between these server and
client roles. [4]

The client-server architecture as enhanced to
simulate parallel programming while keeping the basic
functionalities of the server-client paradigm intact, with a
server/router used to act as an intermediary communicator.

A file containing a list of integers can be transmitted from a
client node to a server node using parallelization, TCP, data
parallelism, sockets, busy waiting, and event
synchronization to facilitate reliable data transfers. [1]

The focus of this paper is the use of parallelism to
increase the speed and efficiency of completing a task. A
splitting algorithm was designed and used to split the data
the Server receives from the Client and divide the set into
computationally comparable sets depending on the size of
the input and the number of threads. Each thread is then
called to run the sorting algorithm on the subset it was
provided, and the values are returned to the control thread
that will complete the last merge. This approach ensures that
a list can always be sorted regardless of whether there are
more threads than values in the set or a large list has only
one available thread. By designing and implementing the
program in a parallelized-centric approach, the performance
gains were simulated to mimic a real-world sorting
algorithm when provided with a variable number of cores
and values.

With the ability to simulate the effects of thread
count and set size on the performance gain/loss of parallel
computing, two experiments were conducted. This
experiment is aimed at establishing a relationship between
the number of threads and input size. These tests were run
on lists consisting of sizes 10, 100, 200, and 300. By doing
this, each of the four input sizes were run with five different
counts of threads. 1, 2, 4, 8, 16. This was done to find the
correlation between increasing the number of threads and
worsening performance on smaller data sets. However, the
significance of these exponential performance gains with
increasing the data set was slightly apparent, so a second
experiment was conducted.

The second experiment conducted aims to answer
the question: “How significant would the performance
increase for if the datasets become exponentially larger for
each increase in the number of threads used for processing?”
An attempt to answer this question by increasing each of the
data sets by a factor of 1000. By doing this, the increase in
performance, due to the number of threads, became
increasingly apparent and significant.

This paper is organized in the following order:
design architecture, implementation approach, simulation
method, data analysis, and conclusion. The design section
lays out the architecture used for the project. The
implementation approach provides the specifics for how the
Java programming language was implemented for parallel
processing. The simulation method presents the metrics used
to test the implementation techniques used for this project.
The data collected from the simulations is broken down in
the data analytics section. The final section, the Conclusion,
summarizes the results obtained from the simulation and the
experiences that were gained from these experiments.

DESIGN ARCHTIECTURE

The network architecture follows the Client-Server
architecture with a third node called Server/Router to act as
a handshaking intermediary. The process starts with the
server router listening on socket port ‘5555’ for connection
requests and builds a routing table in the process. For each
client-server pair the server/router creates an SThread object

Figure 1: Client-Server Architecture with Multithreaded Server

3 | P a g e

to facilitate the communication between each client-server
pair. Once the connection has been established, the client
creates a text file and generates a list of random unique
integers of size n to send to the server for sorting.

Because a Single Program Multiple Data (SPMD)
implementation is used, the data is split between the
simulated cores. A merge sort was used because it lends
itself easily to parallelization: each core receives a subset of
the array and sorts it before merging with the sorted subsets
from the other threads, as shown in Figure 1. With this fork-
join style of parallelism that uses the divide and conquer
approach larger datasets are divided into smaller more easily
solved tasks.[5]

The file created on the client side, that was
received on the socket port ‘5555’ on the server side, is only
passed to a single node instead of multiple nodes. The server
processes the data received from the client side and divides
the task of sorting the data between the simulated cores, as
shown in figure one. Once the data is sorted and merged it is
not sent back to the client, only the time taken to accomplish
the sort is displayed in milliseconds.

IMPLEMENTATION APPROACH

This implementation of the client-server paradigm
utilizes 5 unique classes, TCPServerRouter, TCPServer.,
TCPClient, SThread, and MergeSort.

TCPClient:
After the connection has been established between the client
and server, the client will generate a random distinct array
of the size n given by an argument to the function shown in
the Random Distinct Number Generator code snippet. The
function begins by creating a hash set and hashing each
value randomly generated into it. It then checks each
additional value to ensure that it is unique by checking for
its existence in the hash set. If it is unique, meaning that it
has not yet been hashed, it is added to the string followed by
a comma to be used as a delimiter when the file is read at
the server node. This function will return a string with n
characters; where n represents the size of the array that will
be sorted. The file can then be easily parsed once it is
received by the server.

Random Distinct Number Generator
public static String randomDistinct(int n) {
 /* Used to track what ints have been used
*/
 HashSet<Integer> isUsed = new HashSet<>();
 String newList = "";
 Random random = new Random();

 /* Loops 1024 times and assigns a new
unique value each time. */
 for (int i = 0; i < n; i++) {
 int newValue = -1;

 /* Ensures that there is no duplicate
values */
 do {
 newValue = random.nextInt(999999)
+ 1;
 } while (isUsed.contains(newValue));

 /* Adds the value to the known list
and also to the generated list. */
 newList+= newValue + ",";
 isUsed.add(newValue);
 }
 newList = newList.substring(0,
newList.length()-1);
 /* Sorts and assigns the values generated
to the field. */
 return newList;
}

After this array is instantiated by the client, a file
named ‘file.txt’ is created and a PrintWriter object is utilized
to pass the generated array into this newly created file. This
process is the equivalent to data marshalling in a real-world
environment as the data is ‘marshalled’ into a format that
both the client and server can understand, a text file is used
in this project’s implementation. The line “Bye.” is
appended to the end of the file to signal to the server that it
has reached the end of the file. The file is then sent over the
network to the server using a TCP socket. To do this, the
client creates a socket connecting it to the server router on
port 5555 and passes the server router to the intended
destination by passing it the IP address of the server. The
output stream from this socket is then passed into the
constructor of a DataOutputStream allowing it to take
advantage of its ability to send raw bytes through the socket.
For the implementation of this project, the client sends the
array as a stream of bytes utilizing a buffer of 8kb. A
FileInputStream object is utilized to loop through the file,
reading in 8kb into the buffer with each iteration, and
sending those bytes through the DataOutputStream, and
repeating until all bytes are sent. This process is
demonstrated in the File Creation and Writing code snippet.
Finally, once all the data is sent, the objects are closed, and
the connection is terminated. The client is no longer needed
as the server will not return the sorted array after it’s
processed. [4]

File Creation and Writing
File vFile = new File("src/Client/file.txt");
//creates file
byte[] Bytes = new byte[8192];
//creates a byte buffer for bytes
InputStream dis = socket.getInputStream();
OutputStream dos = socket.getOutputStream();
int sentCount = 0;
FileInputStream fis = new
FileInputStream(vFile);
//write file to dos
while ((sentCount = fis.read(Bytes)) != -1) {
 dos.write(Bytes, 0, sentCount);
}

TCPServerRouter:

The server/router utilizes a ServerSocket object as
the server/router node prepares to handle simultaneous
incoming connections. Each connection is stored in a
‘lookup’ table to allow for incoming requests to be

4 | P a g e

referenced against the table to serve each request to the
correct and intended receiver. The lookup table houses each
socket and that socket's host address. These connections are
initially facilitated by the accept() method blocking the
execution of the process until a connection is received. Once
a connection is established, an SThread is created and
passed to that connection in addition to the address of the
lookup table. This allows the thread to service the
connection while the original server router process can
continue accepting additional connections. This can be
considered as an ‘asynchronous blocking’ technique as
shown in the Socket Creation and Connection code snippet
3. [2][6]

Socket Creation and Connection
clientSocket = serverSocket.accept();
 String [] ip =
(clientSocket.getRemoteSocketAddress() +
"").split(":");
 pw.println(ip[0].substring(1));
//this line updates the routing table with a
new line holding the clients ip in slot one
and a delimiter eg. [clients ip] , [slot for
servers ip]
 pw.flush();
 RoutingTable[ind][0] =
ip[0].substring(1);
 RoutingTable[ind][1]=clientSocket;
SThread t = new SThread(RoutingTable,
clientSocket, ind); // creates a thread with a
random port
t.start(); // starts the thread
ind++; // increments the index

SThread:

This class contains the thread object used to serve
each connection and act as a middleman between the client-
server pair. It starts by taking in the routing table and the
client’s socket passed through as an argument to the
SThread constructor before parsing the lookup table until
the intended destination is found as shown in the SThread
connection code snippet. Once found, the socket takes the
InputStream of the client and passes it to the OutputStream
of the server, which facilitates the connection. The beauty of
this structure is that the main server router process is
completely unaffected by this process and continues
accepting connections.

SThread Connection
// loops through the routing table to find the
destination
for (int i = 0; i < 10; i++) {
 if (destination.equals((String)
RTable[i][0])) {
 outSocket = (Socket) RTable[i][1]; //
gets the socket for communication from the
table
 System.out.println("Found destination:
" + destination);
 outToClient =
outSocket.getOutputStream(); // assigns a
writer

 }
}

TCPServer:

The server handles the main portion of this
implementation as it does the sorting of arrays. This process
can be divided into three subsections: receiving the array,
dividing the work, and merging the results. The first
operation the server needs to accomplish is receiving the file
containing the list of integers array. Upon the server process
beginning execution, a constant is defined for how many
threads the server wants to utilize for sorting. This can be
easily modified for testing purposes. The line below
demonstrates this for an example run using 8 threads:

final int NUM_OF_THREADS = 8;

The server begins by connecting to the server

router in the same fashion as the client. It then utilizes a
DataInputStream as well as the 8kb size buffer to accept the
sent bytes and parse them into strings. A vector is utilized to
hold the lines. A vector was chosen since it is a dynamic
data type, and can accept many lines without crashing,
whereas a fixed array can only hold a fixed number of lines.
Once the server receives the designated end term, “Bye.”,
the loop terminates stopping the parsing. As a result, an
array is stored in a string entitled ‘fromClient’ containing
the values of the full array. Finally, a thread pool is created
to house the number of threads defined in the
NUM_OF_THREADS constant. The receiving process is
shown in the Array Receiving code snippet.

Array Receiving
fromClient = in.readLine();// initial receive
from router (verification of connection)
 System.out.println("ServerRouter: " +
fromClient);
 // Communication while loop TODO:: alter this
before running with client
 Vector <String> s = new Vector<>();
 while ((fromClient = in.readLine()) !=
null) {
 s.add(fromClient);
 //System.out.println("Client said:
" + fromClient);
 if (fromClient.equals("Bye.")) //
exit statement
 break;
 }
 fromClient=s.get(0);

 //array is now received by the server and a
thread pool is created
Thread[] threadpool = new
Thread[NUM_OF_THREADS];

The next step is to convert the string of integer
values into an integer array that can be sorted. Since the
arrays will be frequently passed between methods and
threads, an Integer object array was chosen to store the
numbers rather than a primitive integer array as it is easier
to pass by reference rather than by value between threads.

5 | P a g e

This was achieved using the string split operation on the
received string, which parses through the array converting
each element from a string to an integer. Array Creation
code snippet displays this step in the program.

Array Creation 1
String[] splitString = fromClient.split(",");
//create a wrapper object array to store
values
Integer[] arrayValues = new
Integer[splitString.length];
//loop through and insert values into Integer
object array to pass by reference
// this is o(n) overhead, maybe find better
way to copy over values
for (int i = 0; i < arrayValues.length; i++) {
 arrayValues[i] =
Integer.parseInt(splitString[i]);
}

The next step is to divide the work among the

threads into equal parts too. This is first done by creating a
vector called workDiv of type <Integer []> that will store
each unit of work to be passed to the threads. A ‘startIndex’
is then defined which holds the size of each unit of work and
the starting index of the second subarray. The size of each
unit of work can be found by dividing the total length of the
input array, n, by the number of threads. If the resulting
starting index is not an even factor of n, it is incremented to
ensure no extra values are ignored. Because startIndex
works as a pointer to the start index of the next portion of
values, the size of each increment needs to be stored in a
separate variable called ‘inc’. At this point sorting is ready
to begin and the timer begins tracking. The division of work
is shown in the code snippet Dividing the Array.

Dividing the Array 2
Vector<Integer[]> workDiv = new Vector<>();
int startIndex = (arrayValues.length /
NUM_OF_THREADS);
if (startIndex % arrayValues.length != 0) {
 startIndex++;
}
System.out.println("after spliting");
//inc below stores the increment to move up at
each itteration of while loop
int inc = startIndex;
int prev = 0;
long start=System.nanoTime();

For sorting the array, merge sort was employed for
its consistent efficiency and ease of dividing the data among
the threads. A MergeSort object was created which
implements the Java Runnable interface enabling it to be
runnable by a thread. It operates as a typical merge sort,
except it works in primitive types so it required us to pass
the values as a primitive type and copy them back to an
Integer object afterwards. The merge sort constructor and
run method is shown in the code snippet MergeSort
Instantiation.

MergeSort Instantiation
mergeSort(Integer [] array)
{ this.array=array;
 this.intermediate= new int
[array.length];
 for(int
j=0;j<this.intermediate.length;j++){
 this.intermediate[j] = array[j];
 }
}

@Override
public void run() {
 sort(intermediate, array.length);
 for(int j=0;j<this.array.length;j++){
 this.array[j] = intermediate[j];
 }
}

Once the size of the work units has been
determined, work can be assigned to the threads. If there are
1 or 2 threads active, a separate case is enacted to minimize
the overhead as shown in the Work Divide Case 1 or 2 code
snippet. For 1 thread, the singular thread in the thread pool
is simply activated and passes through the entire array. For 2
threads, the array is divided in half and each half is passed
into a thread. For either case, the threads are initialized and
pass these threads a new mergeSort(arrayValues) and
start each thread. Additionally, there is a check to ensure
that there are not more threads than array values in extreme
cases. If the number of values is small, for example 10, they
are passed to a single thread. This is done because the
overhead for separating each value, creating all the threads,
‘sorting’ and merging would take significantly longer rather
than just passing the 10 values to a single thread. Since only
one parallel task is worked on at a time, it was determined to
not use solutions, such as dynamic blocking where the task
size would be a dynamically increased aggregating number
of parallel tasks, before enqueuing it as one batch task.[7] In
either case, once the threads are started, the server uses a
spin lock until the threads join back to ensure that all threads
are completed before the merging process can begin.

Work Divide Case 1 or 2
if (NUM_OF_THREADS == 1 ||
arrayValues.length<threadpool.length) {
 //create thread and pass it the full array
 threadpool[0] = new Thread(new
mergeSort(arrayValues));
 //start thread
 threadpool[0].start();
 //a timer to ensure thread finishes before
the prints proceed
 while(threadpool[0].isAlive());
} else if (NUM_OF_THREADS == 2) {
 //since there are 2 threads, 2 subarrays
are needed
 //divide the input array (arrayValues)
into 2 subarrays of each half
 Integer[] first =
Arrays.copyOfRange(arrayValues, 0,
arrayValues.length / 2);
 Integer[] second =

6 | P a g e

Arrays.copyOfRange(arrayValues,
(arrayValues.length / 2), arrayValues.length);
 //create threads for each half
 threadpool[0] = new Thread(new
mergeSort(first));
 threadpool[1] = new Thread(new
mergeSort(second));
 //start threads
 threadpool[0].start();
 threadpool[1].start();
 //method to ensure they finish
 while(threadpool[0].isAlive() ||
threadpool[1].isAlive());
 //finally, merge the two
 merge(arrayValues, first, second);

}

The third case is when there are more than 2

threads, the work will need to be dynamically allocated and
multiple threads will be created. A simple algorithm was
devised to divide the work evenly utilizing the previously
mentioned variables ‘startIndex’ and ‘inc’ by looping
through and adding each ‘inc’ worth of values starting at
each ‘startIndex’ pointer, then increasing the pointer to
assign the next unit of work and saving the previous pointer
in a previous variable for later. Then a unit of work is added
to the previously defined ‘workDiv’. At each iteration of the
loop, a check is performed to ensure that an index out of
bounds runtime error is not thrown by checking if the next
‘startIndex’, the ‘startIndex’ + ‘inc’, is less than the array
length. A boolean flag is used to control the while loop, with
flag ‘f’ initially set to true. If the next ‘startIndex’ + ‘inc is
less than the size of the array, it is determined that there is
one division of work remaining, and this division of work is
smaller than the ‘inc’ size. The last bit of values is added to
a final ‘workDiv’ unit and fllag f is set to false to terminate
the loop. At this point the work is divided out into equal
parts with one final unit being slightly smaller. This
algorithm is implemented in code snippet Work Divided
Case 3.

Work Divided Case 3

while (f) {
 //split work into 1/n parts
 Integer[] work =
Arrays.copyOfRange(arrayValues, prev,
startIndex);
 //insert work into vector
 workDiv.add(work);
 //update prev and start index
to next values
 prev = startIndex;
 startIndex += inc;
 //check if the next iteration
will cause condition to fail
 if (startIndex + inc >=
arrayValues.length) {
 //if so the below will
create an array of all the remainng values
that will not fill an array
 Integer[] ww =
Arrays.copyOfRange(arrayValues, prev,

startIndex);
 prev = startIndex;
 //add the last full sized
array to the vector
 workDiv.add(ww);
 //make the index to stop
equal the last value of the array
 startIndex =
arrayValues.length;
 //copy the last values
that will not full an array into their own
smaller arary and add
 Integer[] w1 =
Arrays.copyOfRange(arrayValues, prev,
startIndex);
 workDiv.add(w1);
 //stop the loop
 f = false;
 }
 }

At this point the threads are ready to begin

execution by looping through the thread pool. While the
threads are running, the server process’s spin lock is applied
until all threads have completed execution as show in the
Run Threads code snippet.

Run Threads
//activate all threads
for (int i = 0; i <
Math.min(threadpool.length, workDiv.size()) ;
i++) {
 threadpool[i] = new Thread(new
mergeSort(workDiv.get(i)));
 threadpool[i].start();
}
// small pause to wait for threads to return
to us. (could make these threads synchronous)
boolean [] alive=new
boolean[Math.min(NUM_OF_THREADS,
workDiv.size())];
boolean allAlive=true;
while (allAlive){
 for(int i=0;i< alive.length;i++){
 if(!threadpool[i].isAlive()) {
 alive[i] = true;
 }
 }
 allAlive=false;
 for (boolean I : alive){
 if(!I){
 allAlive=true;
 break;
 }
 }
}

The final step is to merge the results. Typically, the
merge sort algorithm will merge two arrays at a time
recursively, however for this implementation the subarrays
are merged at once with a custom merge algorithm. The
merge function takes in two parameters, a pointer to the
output array, the initial input integer array object, and a

7 | P a g e

pointer to a vector containing all the subarrays, ‘workDiv’.
The algorithm begins by creating a bitmap style counter
integer array of size n, that stores the current index of each
input array in the vector. A nested loop is then utilized
where the outer loop iterates through each index of the
output array and the inner loop parses through each sub
array at the index of each subarray’s counter. The inner loop
checks to ensure no memory violation will occur by making
sure the size of the array is greater than the soon to be index
before going to the current index of each sub array and
finding the lowest. It does this by comparing each element
to the ‘smallest’ variable and storing the smallest value as
well as the index of the counter array that produced the
value. When all the values are compared, and the smallest is
found, that value is stored into the output array and the
respective counter is indexed to ensure that each subarray
progresses. This process repeats for every index of the
output array until all the sorted subarrays are merged into
one final array. Finally, this array is passed back to the
server, and the server’s work is complete. This custom
algorithm is shown in code snippet Merge.

Merge
public static void mergeAll(Integer[] output,
Vector<Integer[]> input) {
 //counters array acts as int bit map to
keep track of each subarrays index
 int[] counters = new int[input.size()];
 //2 vars to keep track of current smallest
val and its index in the given array
 //these values are used so it will be
clear if either is causing a bug
 int smallest = 9999;
 int index = -1;
 //outer loop counts index of output array
 for (int i = 0; i < output.length; i++) {
 //inner loop works through each
subarray in the vector
 for (int j = 0; j < input.size(); j++)
{
 //first check to see if the index
will cause an exceptoin (array is out of novel
values)
 if (counters[j] ==
input.get(j).length) {
 continue;
 }
 //else check if given arrays value
is smaller than running smallest
 else if (input.get(j)[counters[j]]
< smallest) {
 //update running smallest and
its index
 smallest =
input.get(j)[counters[j]];
 index = j;
 }
 }
 //finally update the current index of
output array with correct smallest value
 output[i] = smallest;
 counters[index]++;
 //reset index and smallest counters

 index = -1;
 smallest = Integer.MAX_VALUE;
 }
}

Finally, the total time the server took to complete
the sort is calculate by subtracting the final time by the
initial time and storing as shown below:

start = System.nanoTime()-start;

SIMULATION METHOD

To test the theory that a program's runtime can be
decreased by dividing the problem into approximately equal
smaller parts. These smaller problems are passed to threads
used to simulate a multicore processor that will each smaller
problem. After the work is performed by the threads the
parts are returned to be combined to form a solution to the
original problem. To simulate multiple processors threads
were created to act as a core in the CPU that receives the
smaller portions of the problem. The problem that was used
to test this theory was to sort an array of varying sizes that
contained distinct integers. The array is divided into parts
equal to the number of processors used during that trial. The
number of processors tested were: 1, 2, 4, 8 and 16 with
arrays varying from 10 to 300000 elements. The time taken
by the sort was recorded in milliseconds after each trial.
Two experiments were conducted using two different arrays
that increased by two different factors. The first experiment
focuses on how smaller arrays are affected by parallel
processing from a size 10 to 300 elements. The second
experiment then increases the first experiment’s arrays by a
factor of 1,000 to see how larger arrays are affected with
parallel processing practices.

A. Experiment I

For the first experiment, four arrays were generated of
sizes 10, 100, 200, and 300. Then each array was populated
with random and distinct numbers ranging from 1 to
999,999 to ensure the use of a wide range of data. These
arrays were each written to separate text files, that were
delimited by commas. Subsequently, these text files were
transmitted to the server process via a TCP socket. Once the
data reached the server side, each array was sorted using a
modified Merge Sort algorithm to support multithreading.
For the context of this experiment, this sorting process was
performed on two separate computers with different
hardware configurations and was conducted in five stages
for each array size.

In each stage, the specified array size was sorted using a
thread count of 2n, where n represented the stage number
indexed by 0. For instance, in the first stage for the array
size of 10, the array was sorted by 20 threads, providing us
with the serial performance for that dataset. This procedure
was repeated for each stage, thereby giving us the
performance for thread counts ranging from 1 to 16 threads.

8 | P a g e

After each stage, the results for each array size were
compiled into a table, which will be discussed later.

B. Experiment II

The second and final experiment, four arrays were
generated again, following a structure similar to that of
experiment one. However, each array size was scaled up by
a factor of 1,000, resulting in sizes of 10,000, 100,000,
200,000, and 300,000 elements, respectively. Once again,
each array was populated with random and distinct integers
ranging from 1 to 999,999. Subsequently, the arrays were
transmitted via a TCP socket to the server process.

Similar to experiment one, the server process executed a
modified Merge Sort on each text file corresponding to a
different array size and calculated the overall time required
to sort the elements. The sorting process was divided into
five distinct stages. In these stages, the thread counts varied,
starting with 20 threads in the initial stage and concluding
with 24 threads in the final stage. The results obtained for
each scaled array size were compiled into a table, which will
be discussed in the following section.

DATA ANALYSIS

From each experiment the time was collected, in
nanoseconds and recorded in milliseconds, for the time it
takes the server to process and sort a received array. The
timing begins at the creation of the threads and finishes
when the data from each thread finishes merging creating a
complete sorted array. For the experiments the improvement
in performance of increasing the number of parallel
processors versus the serial one, is measured using the
speedup and efficiency metrics. The speedup, the ratio of
the program runtime in serial over the runtime in parallel:

 [8]

Where n is the size of the input and p is the number of
processors. A perfect speedup score is where the speedup
equals the number of processors, Speedup(n,p) = p, also
known as linear speedup. To determine how each processor
contributed to the speedup parallel efficiency is used.
Parallel efficiency is calculated using the following formula:

 [8]
Parallel efficiency is given by the speedup over the number
of processors. A perfect score, which corresponds to linear
speedup, is the # of processors / # of processors = 1.0,
meaning that each processor is being used to its maximum
potential.
 These three metrics; runtime, speedup and
efficiency; are used to evaluate and graph the output of the
parallel server on varying types of input sizes. The first
experiment captured the performance of the server for a
smaller set of array sizes in order to test the lower boundary
of performance. In contrast, the second experiment scaled
these original input sizes to mimic real world performance
with much larger input sizes.

C. Experiment I Results

In the initial experiment, four separate files were

transmitted with input sizes ranging from 10 to 300
elements to be sorted. As detailed earlier in the Simulation
Method, each of these input files underwent five distinct
stages, with each stage spawning a different number of
threads to aid in computation. In the first stage, illustrated in
Table 1, the server sorted input sizes serially, utilizing only
one core.

Examining the first column of Table 1, where the
array size of 10 was sorted using 1 through 8 cores, it is
observed that the increase in cores has no effect on the time
required to sort the data. This lack of impact stems from the
negligible input size, causing any overhead incurred by
using additional threads to outweigh the benefits of
parallelism. Additionally, it is important to note for the
program’s implementation the program executed in serial
whenever the thread count would exceed the elements in the
arrays causing the last value in the column to be the same as
the cell with serial time. This phenomenon is further
underscored by the second column of Table 1, which depicts
the runtime for an array size of 100 elements. Here, an
increase in runtime corresponding to the increase in the
number of threads used is seen, exemplifying the scenario
where the overhead from parallel sorting surpasses the
benefits.

However, upon examining the latter two input sizes
in the table, it is discerned that there is an increase in
performance with the escalation of cores used, until four
cores is surpassed. This improvement arises from the
problem size being sufficiently large to yield faster
performance despite the overhead. Nevertheless, as the
number of cores increases, the performance gain diminishes,
albeit still outperforming the serial time.

The results presented in Table 1 are further

elucidated by the 3-Dimensional plot depicted in Figure 2.
This graphical representation showcases four curves, each
illustrating the runtime plotted against the input size and the
number of cores utilized. It is evident that as both the input
size and core count increase, the trough of the curve
deepens, indicating an enhancement in performance
resulting from the utilization of more cores to process the
data.

Table 1: Runtimes for the randomly generated arrays in
experiment 1.

10 100 200 300

p = 1 2 2 6 7
p = 2 2 2 4 5
p = 4 2 2 2 3
p = 8 2 3 4 4

p = 16 2 4 5 7

Runtime
Number

of
Threads

Array Sizes (# of elements)

9 | P a g e

However, this performance gain begins to diminish
once a threshold of 4 cores is reached. This decline can be
attributed to the overhead incurred from spawning
additional threads outweighing the benefits yielded by those
threads.

 After collecting the runtimes, the speedup was
computed using the respective formula for each set of
threads across all array sizes. Table 2 showcases these
calculated values. As anticipated, the first column in Table 2
exhibits a speedup of 1 since each set of cores operated
within serial time. The speedup begins to noticeably decline
when the second column in Table 2 is examined, where the
overhead from employing 8 and 16 threads resulted in an
overall slowdown.

However, notably improved results are observed in
the latter two columns, particularly with the array size of
200, where a speedup of 3 is achieved when using 4 threads
to sort the elements. Remarkably, the server attained the
most favorable speedup results with an array size of 200,
slightly surpassing the adjacent column. This discrepancy is
further accentuated by the 3-D graph depicting the speedups
in Figure 3. It is evident that the curve for the array size of
200 exhibits a substantially higher peak but a swifter decline
in speedup. This variation can be attributed to the
divisibility of the data in the implementation. The array size

of 200 is considerably more divisible by powers of two,
leading to a more even distribution of the data. This
equitable distribution of the workload accentuates the
speedup, particularly for smaller datasets.

Although, upon increasing the cores beyond 4, a
sharper decrease is observed in speedup compared to the last
column. This decline can be attributed to the smaller
overhead-to-performance ratio for the smaller datasets,
unlike the array size of 300 elements.

 Following the computation of speedup for the
parallel server, the efficiency is analyzed to see how
effectively the server distributed the work among the cores.
Table 3 presents all the calculated efficiencies derived using
the efficiency formula mentioned earlier. As anticipated, the
efficiency for the array size of 10 elements was notably
subpar. Upon examination, it becomes apparent that one
core predominantly handles the workload. This outcome is
expected, considering the small input size, where most of
the data is assigned to the initial core, with any remaining
portion distributed among others.

This declining trend persists across the remaining
dataset, with efficiency diminishing as the number of cores
increases. This suggests that the server struggles to
distribute the workload efficiently for larger core counts,
particularly evident in smaller input sizes, indicating that a
single core bears the brunt of the computation.

Furthermore, it's noteworthy that the efficiency

peaks for the test file with an input size of 200. This is
clearly illustrated in the 3-D plot presented in Figure 4,

Figure 3: A line graph displaying the calculated speedup for each
array size for a given number of processors for experiment 1.

Figure 2: A line graph displaying the recorded runtimes for each
array size for a given number of processors for experiment 1.

Table 3: Calculated efficiency for the randomly generated arrays in
experiment 2.

10 100 200 300
p = 1 1 1 1 1
p = 2 0.5 0.5 0.75 0.7
p = 4 0.25 0.25 0.75 0.58
p = 8 0.13 0.08 0.19 0.22

p = 16 0.06 0.03 0.08 0.06

Efficiency
Number

of
Threads

Array Sizes (# of elements)
Table 2: Calculated speedup for the randomly generated arrays in
experiment 1.

10 100 200 300
p = 1 1 1 1 1
p = 2 1 1 1.5 1.4
p = 4 1 1 3 2.33
p = 8 1 0.67 1.5 1.75

p = 16 1 0.5 1.2 1

Speedup
Number

of
Threads

Array Sizes (# of elements)

10 | P a g e

depicting all efficiencies plotted against the number of
threads and the input size. Figure 4 highlights the highest
peak for efficiency, observed with more than one core,
specifically at thread counts of 2 and 4 for an input size of
200 elements. As mentioned earlier, the server exhibited the
best speedup with an input size of 200 elements due to the
improved divisibility of the data. This observation is further
supported by the efficiency, indicating that the optimal
efficiency was achieved when the input size was 200
elements in experiment 1.

D. Experiment II Results

After it was observed in the first experiment that

there was no real increase in efficiency or speedup as the
array was divided into an increasing number of processors.
The steps of the first experiment were repeated with the size
of the arrays increased by a factor of 1,000. With the array
sizes increased 1,000 times the benefits of parallel
processing can be seen.

As the array increased the benefits of parallel
processing can be seen in Table 4. When the array is only
1000 the time it takes to process the array is by
approximately half from one to two processers. The
decrease in time is again reduced by half from using two
processors. When eight and sixteen processors are used on
an array of 10,000 elements the decrease in time to process
the arrays is hampered by the work to divide the array.
When the array size is increased from 100,000 to 300,000,
the decrease in time to process for number of splits equal to
the number of cores is noticeable. The runtime decreases
between about a quarter a third of the time when the number
of processors is increased between two and four processors.
When the processors are increased to eight or sixteen the
runtime is only decreased by about half.

 When the runtimes are plotted onto a 3D graph the
difference between runtimes depending on the number of
processors and array size can be seen. It is shown in figure
5 that the greatest decrease in time from one processor is
seen in an array of 300,000 elements. While an array of
10,000 elements might look like it does not decrease but that
is due to the fact that the 300,000 elements decrease so
much compared to the 10,000 elements array.

 The speedup gained by using parallel processing is
almost equal for each processor regardless of the size of the
array. The speed up almost increase by the same factor has
the number of processors doubles. The speed up is more
than tripled from one processor to two processors and from
two to four processors. The speedup is slightly slowed to an
increase of a factor of two when the number of processors
increases from four to eight. When the number of
processors is doubled from eight to sixteen the speedup is
only gained by a factor of 1.75.

Figure 5: A line graph displaying the recorded runtimes for each
array size for a given number of processors for experiment 2.

Figure 4: A line graph displaying the calculated efficiency for each
array size for a given number of processors for experiment 1.

Table 4: Runtimes for the randomly generated arrays in experiment 2.

10000 100000 200000 300000
p = 1 591 48221 183908 403233
p = 2 258 14191 57020 109616
p = 4 123 4532 15974 34549
p = 8 123 2278 8335 18565

p = 16 104 1257 4668 10450

Runtime
Number

of
Threads

Array Sizes (# of elements)

11 | P a g e

 The similarities between each sized array are best
visualized by graphing table 5 to a three-dimensional line
graph where the depth axis is the size of the arrays used, the
horizontal axis is the number of processors used and the
vertical axis is the speedup represented as a percentage. The
graph in figure 6 shows that the speedup follows the same
shape as the theoretical big O trajectory as a merge sort,
which is O(nlog2n).

Unlike the speedup the efficiency did increase the
same amount for all the array sizes. The array with 10,000
elements was the least efficient while the arrays with a
hundred thousand elements or more had approximately the
same efficiency. The ten thousand element array followed
the same pattern as the larger arrays but had a lower
increase in efficiency for each increase in the number of
processors used. All the arrays had their greatest efficiency
when four threads were used to sort an array. The efficiency
for each processor begins to decrease after four threads are
used.

 The changes in efficiency for each array are
visualized in figure 7. The arrays 100,000 elements and
larger the slope of the graph increases between a factor of
0.6 to 0.8 for one to eight processors used. When the
number of processors is increased to eight and higher the
efficiency is between 88% to 95% the efficiency of the
previous number of processors. The ten thousand element
array has the smallest gain in efficiency and has the largest
decrease in efficiency as the number of processors increases
after four threads. Efficiency only increases by 15% and
then 5% as the number of processors is doubled from one to
four. When the number of processors is doubled again to
eight and sixteen the efficiency decreases by about 50% for
each increase.

CONCLUSION

The primary goal of this research paper was to
implement a multi-threaded server capable of sorting large
data inputs sent over a network from clients. The SPMD task
parallelism method of implementation effectively addressed
the issues of multi-threading including thread
synchronization and load balancing of the data among the
concurrently running threads [8].

Times were documented for various combinations
of array sizes ranging from 10 to 300,000 as well as the
number of threads used between 1 and 16. These conditions
were each run separately on two computers of differing
specifications. During the two experiments run, there was

Table 6: Calculated efficiency for the randomly generated arrays in
experiment 2.

10000 100000 200000 300000
p = 1 1 1 1 1
p = 2 1.15 1.7 1.61 1.84
p = 4 1.2 2.66 2.88 2.92
p = 8 0.6 2.65 2.76 2.72

p = 16 0.36 2.4 2.46 2.41

Efficiency
Number

of
Threads

Array Sizes (# of elements)

Figure 6: A line graph displaying the calculated speedup for each
array size for a given number of processors for experiment 2.

10000 100000 200000 300000
p = 1 1 1 1 1
p = 2 3.68 3.4 3.23 3.68
p = 4 11.67 10.64 11.51 11.67
p = 8 21.72 21.17 22.06 21.72

p = 16 38.59 38.36 39.4 38.59

Speedup
Number

of
Threads

Array Sizes (# of elements)

Table 5: Calculated speedup for the randomly generated arrays in
experiment 2.

Figure 7: A line graph displaying the calculated efficiency for each
array size for a given number of processors for experiment 7.

12 | P a g e

almost no speedup and even increased time in some cases
when the number of cores increased for the smaller arrays.
This can be explained by the overhead required to distribute
the work across many threads when there is just not enough
work required to justify it. However, for the large arrays
(>100,000), it was observed that a significant speedup
occurred when the number of threads increased. This can be
explained due to the cost of overhead minimal compared to
the increased efficiency of the added cores. The efficiency in
these large test cases indicated a super linear speedup where
the speedup is greater than anticipated for an increased
number of cores.

This research showed that there is no optimal
number of cores that will suit all cases. To allow more
consistent results in a dynamic environment of differing
input sizes, a threshold could’ve been implemented to assign
the number of cores on runtime. Overall, it was determined
that spending the extra time to implement parallel processing
for a sorting algorithm yielded significantly better results
when the amount of data is substantial.

REFERENCES
[1] B. A. Forouzan, Data Communications and Networking, 5th ed. New

York, NY: McGraw-Hill Professional, 2012.

[2] “Writing the server side of a socket,” Oracle.com. [Online].
Available:

https://docs.oracle.com/javase/tutorial/networking/sockets/clientServe
r.html. [Accessed: 09-Feb-2024].

[3] “Socket (java platform SE 8),” Oracle.com, 08-Jan-2024. [Online].
Available:
https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html.
[Accessed: 23-Feb-2024].

[4] M. L. Liu, Distributed computing: Principles and applications: United
States edition. Upper Saddle River, NJ: Pearson, 2003.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. Cambridge (Mass.): MIT Press, 2009.

[6] Baeldung.com. [Online]. Available: https://www.baeldung.com/java-
socketexception. [Accessed: 23-Feb-2024].

[7] K. Streit, J. Doerfert, C. Hammacher, A. Zeller, and S. Hack,
“Generalized task parallelism,” ACM Transactions on Architecture
and Code Optimization, Available:
https://dl.acm.org/doi/abs/10.1145/2723164 [accessed Apr. 13, 2024].

[8] P. Pacheco, “An Introduction to Parallel Computing”, Elsevier Inc.,
2011. ISBN-10: 01237426095

APPENDIX

The demonstration and the execution of this
program with the different input sizes can be found in the
mp4 file attached in the submission of this report.

